Fast Global Alignment Kernels
نویسنده
چکیده
We propose novel approaches to cast the widely-used family of Dynamic Time Warping (DTW) distances and similarities as positive definite kernels for time series. To this effect, we provide new theoretical insights on the family of Global Alignment kernels introduced by Cuturi et al. (2007) and propose alternative kernels which are both positive definite and faster to compute. We provide experimental evidence that these alternatives are both faster and more efficient in classification tasks than other kernels based on the DTW formalism.
منابع مشابه
gpALIGNER: A Fast Algorithm for Global Pairwise Alignment of DNA Sequences
Bioinformatics, through the sequencing of the full genomes for many species, is increasingly relying on efficient global alignment tools exhibiting both high sensitivity and specificity. Many computational algorithms have been applied for solving the sequence alignment problem. Dynamic programming, statistical methods, approximation and heuristic algorithms are the most common methods appli...
متن کاملAlgorithms for Learning Kernels Based on Centered Alignment
This paper presents new and effective algorithms for learning kernels. In particular, as shown by our empirical results, these algorithms consistently outperform the so-called uniform combination solution that has proven to be difficult to improve upon in the past, as well as other algorithms for learning kernels based on convex combinations of base kernels in both classification and regression...
متن کاملOn a Family of Decomposable Kernels on Sequences
In many applications data is naturally presented in terms of orderings of some basic elements or symbols. Reasoning about such data requires a notion of similarity capable of handling sequences of different lengths. In this paper we describe a family of Mercer kernel functions for such sequentially structured data. The family is characterized by a decomposable structure in terms of symbol-level...
متن کاملScalable Alignment Kernels via Space-Efficient Feature Maps
String kernels are attractive data analysis tools for analyzing string data. Among them, alignment kernels are known for their high prediction accuracies in string classifications when tested in combination with SVMs in various applications. However, alignment kernels have a crucial drawback in that they scale poorly due to their quadratic computation complexity in the number of input strings, ...
متن کاملFast GPGPU Data Rearrangement Kernels using CUDA
* Corresponding author – [email protected]. Graduate student at TUM, work carried out the GE-Global research working towards a master thesis at TUM. Abstract: Many high performance computing algorithms are bandwidth limited, hence the need for optimal data rearrangement kernels as well as their easy integration into the rest of the application. In this work, we have built a CUDA library of fas...
متن کامل